FEB 09, 2020 1:01 PM PST

Switching Inflammation Off at the Molecular Level

WRITTEN BY: Carmen Leitch

While chronic inflammation is a natural result of getting old and experiencing stress and toxin exposure, it has been theorized to be the basis for a wide variety of chronic diseases. Scientists have now found a molecule that acts as a kind of switch that regulates the biological mechanisms that underlie chronic inflammation. The findings, which were reported in Cell Metabolism, may offer insight into treatments for many conditions including cancer, diabetes, and Alzheimer's.

Image credit: Pexels

"My lab is very interested in understanding the reversibility of aging," said the senior study author Danica Chen, an associate professor of metabolic biology, nutritional sciences and toxicology at the University of California Berkeley. "In the past, we showed that aged stem cells can be rejuvenated. Now, we are asking: to what extent can aging be reversed? And we are doing that by looking at physiological conditions, like inflammation and insulin resistance, that have been associated with aging-related degeneration and diseases."

A protein complex called the NLRP3 inflammasome helps sense and respond to potential threats against the body. Overactivation of this complex has been associated with chronic diseases including dementia, diabetes and cancer.

Chen's team has determined that this complex can be inactivated by deacetylating or deleting a chemical group from the NLRP3 inflammasome. It may be possible to treat age-related chronic inflammation and the diseases that come with it by using drugs that aim to deacetylate or turn off the NLRP3 inflammasome.

"This acetylation can serve as a switch," Chen explained. "So, when it is acetylated, this inflammasome is on. When it is deacetylated, the inflammasome is off."

Investigating further, the researchers learned that a protein called SIRT2 normally acts to deacetylate the NLRP3 inflammasome. Using a mouse model, the scientists genetically deleted the SIRT2 protein, and found that the mice had a greater degree of inflammation at the age of two than normal mice. The inflamed mice also had higher resistance to insulin, which is connected to metabolic diseases.

In another mouse model, the immune systems of older mice were knocked out with radiation and then replenished with blood stem cells. One group was given stem cells that were made to generate a deacetylated NLRP3 inflammasome, the other group got acetylated NLRP3 inflammasome. After six weeks, insulin resistance went down in the mice that received the inactivated or deacetylated version. It may be possible, therefore, to reverse the progression of inflammation-related disease.

"I think this finding has very important implications in treating major human chronic diseases," Chen said. "It's also a timely question to ask because, in the past year, many promising Alzheimer's disease trials ended in failure. One possible explanation is that treatment starts too late, and it has gone to the point of no return. So, I think it's more urgent than ever to understand the reversibility of aging-related conditions and use that knowledge to aid a drug development for aging-related diseases."

Sources: Science Daily via UC Berkeley, Cell Metabolism

About the Author
  • Experienced research scientist and technical expert with authorships on 28 peer-reviewed publications, traveler to over 60 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JAN 16, 2020
Cell & Molecular Biology
JAN 16, 2020
Understanding the Restorative Power of Sleep
Scientists have learned more about how sleep gets us ready to face the challenges of the day....
FEB 13, 2020
Immunology
FEB 13, 2020
Protein that suppresses immune system linked to lupus
  A study published in Human Immunology has described, for the first time, a link between an immunosuppressive protein on the surface of T cells and t...
MAR 08, 2020
Cell & Molecular Biology
MAR 08, 2020
How a Decoy Strategy Helps Cells Evade the Effects of Pathogens
Scientists have identified a strategy used by cells to shield them from the toxins that can be released by dangerous bacterial pathogens....
MAR 17, 2020
Cell & Molecular Biology
MAR 17, 2020
In Search of the Original Enzyme
It has been suggested that life arose from molecules that gradually came together in the right ways to form simple cells....
MAR 24, 2020
Cell & Molecular Biology
MAR 24, 2020
Certain Drugs May Raise the Risk of a Severe COVID-19 Infection
ACEIs and ARBs may make coronavirus infections worse, which can help explain why older adults are faring so much worse....
MAR 29, 2020
Cell & Molecular Biology
MAR 29, 2020
Learning More About Boosting Immunity in Older Adults
Older adults are more susceptible to infections and don't generate a robust immune response after a vaccination....
Loading Comments...