MAR 24, 2020 9:06 AM PDT

A stretchy supercapacitor is right around the corner

New research published just days ago in Matter, a journal from Cell Press¸ outlines the production of a new kind of supercapacitor that goes above and beyond traditional supercapacitors. Engineered by researchers at Duke University and Michigan State University, the device is capable of being stretched to eight times its original size while still maintaining its functionality. Additionally, recurrent stretching results in no sign of wear and tear and even after 10,000 cycles of charging and discharging, it loses a mere few percentage points of energy performance.

While some people compare supercapacitors to batteries, supercapacitors are unique in their ability to discharge energy in short, massive bursts. Additionally, though they require charge from an outside source (unlike batteries), they charge and discharge faster than batteries and can withstand more charge-discharge cycles. Nevertheless, the majority of supercapacitors are still limited by their stiff materials.

"Our goal is to develop innovative devices that can survive mechanical deformations like stretching, twisting or bending without losing performance," said senior author Changyong Cao, an assistant professor of packaging, mechanical engineering and electrical and computer engineering at Michigan State University. Cao is also director of the Laboratory for Soft Machines and Electronics at MSU. "But if the power source of a stretchable electronic device isn't stretchable, then the entire device system will be constrained to be non-stretchable."

What Cao and fellow senior author Jeff Glass, a professor of electrical and computer engineering at Duke, have developed is a stamp-sized supercapacitor that can hold over two volts. They say that combining four supercapacitors together could power a two-volt Casio watch for an hour and a half. But ideally, supercapacitors won’t actually replace batteries, rather work with them.

"A lot of people want to couple supercapacitors and batteries together," Glass said. "A supercapacitor can charge rapidly and survive thousands or even millions of charging cycles, while batteries can store more charge so they can last a long time. Putting them together gives you the best of both worlds. They fill two different functions within the same electrical system."

Photo: Pixabay

While the researchers are proud of what they have developed, they acknowledge that their supercapacitor still has a ways to go. "We still have some work to do for building a complete stretchable electronics system," Cao said. "The supercapacitor demonstrated in this paper doesn't go as far as we want it to yet. But with this foundation of a robust stretchable supercapacitor, we will be able to integrate it into a system that consists of stretchable wires, sensors and detectors to create entirely stretchable devices."

Sources: Matter, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
DEC 12, 2019
Chemistry & Physics
DEC 12, 2019
Self-learning, Light-responsive Robot Inspired by Pavlov's Dog
Russian physiologist Ivan Pavlov famously trained the canines in his experiments to salivate in response to the sound of a metronome, which was a showcase...
JAN 08, 2020
Chemistry & Physics
JAN 08, 2020
Florence Nightingale: Nursing Pioneer, and Data Scientist?
Florence Nightingale, the pioneer in modern nursing care, served as a nurse manager in the Crimean War in the 1850s. Due to her wholeheartedly devotion to...
MAR 10, 2020
Chemistry & Physics
MAR 10, 2020
(Stop) Putting Crap into Graphene Research
In a recently published study, a group of Czech Republic researchers from the puts together two materials that are unlikely to appear in the same place: gu...
MAR 19, 2020
Chemistry & Physics
MAR 19, 2020
The "Android" Approach to Nuclear Power
Nuclear power plants, whether you like them or not, produce a significant portion of the carbon-free electricity at the moment worldwide. With a wave of hi...
APR 01, 2020
Chemistry & Physics
APR 01, 2020
Discovery of a new molecule could improve storage of big data
New research from scientists at the University of Limerick's Bernal Institute details the discovery of a molecule that has the potential to change the ...
APR 03, 2020
Genetics & Genomics
APR 03, 2020
Physical Forces Can Change How Genes Are Expressed
Less than a millisecond after a cell is stretched out, genes are activated, which will result in the production of proteins....
Loading Comments...