SEP 16, 2020 8:15 AM PDT

Sub-nanoparticle catalysts prove effective

Researchers at the Tokyo Institute of Technology have developed a technique to control the size and composition of sub-nanoparticles. Led by Dr. Takamasa Tsukamoto and Professor Kimihisa Yamamoto, the results detailing the macromolecular template, which they call a phenylazomethine dendrimer, are published in Angewandte Chemie International Edition.

Sub-nanoparticles (SNPs) are nanoparticles with a diameter of 1 nm or less. They are significantly more useful than nanoparticles because all of their atoms are exposed for reactions and they have a high semi-conductivity. Because of this, researchers are interested in using SNPs as catalysts for industrial reactions. Yet, until now, there has been a delay in making this a reality because conventional production methods for nanoparticles can’t be used on SNPs.  

In developing the phenylazomethine dendrimer, the researchers utilized the atom hybridization method (AHM) to control and design the size and composition of the SNPs. They also analyzed the chemical reactivity of alloy SNPs.

"We created monometallic, bimetallic, and trimetallic SNPs (containing one, combination of two, and combination of three metals respectively), all composed of coinage metal elements (copper, silver, and gold), and tested each to see how good of a catalyst each of them is," reports Dr. Tsukamoto. 

They determined that these SNPs were stable and more effective and had a higher catalytic performance than their corresponding nanoparticles. Of the SNPs they created, the trimetallic combination "Au4Ag8Cu16" demonstrated the highest turnover frequency. The key to this development is that these SNPs were created under mild conditions compared to conventional nanoparticles.

Photo: Pexels

Professor Yamamoto commented: "We demonstrate for the first time ever, that olefin hydroperoxygenation can be catalyzed under extremely mild conditions using metal particles in the quantum size range. The reactivity was significantly improved in the alloyed systems especially for the trimetallic combinations, which has not been studied previously."

The team is confident that their technique will be helpful in future innovations with SNPs, citing the belief that sub-nanomaterials can be derived from diverse elements and can address some of the energy crises facing our planet.

Sources: Angewandte Chemie International Edition, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JUL 23, 2020
Cannabis Sciences
Lab Tests Show Levels of THC Can Rise in CBD Oil During Storage
JUL 23, 2020
Lab Tests Show Levels of THC Can Rise in CBD Oil During Storage
To be federally legal in all states CBD (cannabidiol) oil must contain less than 0.3 percent of the psychoactive ingredi ...
JUL 27, 2020
Chemistry & Physics
Cobalt-doped titanium-dioxide stops the reproduction of listeria monocytogenes
JUL 27, 2020
Cobalt-doped titanium-dioxide stops the reproduction of listeria monocytogenes
Scientists suggest adding cobalt-doped titanium-dioxide (CoO-TiO2) to foods in order to prevent the spread of listeria, ...
SEP 06, 2020
Chemistry & Physics
The fluid dynamics of pelagic snails' movement
SEP 06, 2020
The fluid dynamics of pelagic snails' movement
Warm water pelagic snails don’t get much attention, but they certainly should. The snails move between ocean surfa ...
SEP 10, 2020
Chemistry & Physics
Reprogramming Virus to Build Better Li-ion Batteries
SEP 10, 2020
Reprogramming Virus to Build Better Li-ion Batteries
There's no doubt that the word "virus" is currently on everyone's mind. However, there's a lot mor ...
SEP 11, 2020
Chemistry & Physics
Indigenous fermentation processes require complex chemical reactions
SEP 11, 2020
Indigenous fermentation processes require complex chemical reactions
A study published in the Nature journal Scientific Reports uncovers the complex chemical processes behind aborigina ...
SEP 21, 2020
Chemistry & Physics
Stable skyrmions hold the future of electronic devices
SEP 21, 2020
Stable skyrmions hold the future of electronic devices
New research published in Nature Communications reports on development in skyrmion stability, brought to us from sc ...
Loading Comments...