OCT 27, 2020 1:02 PM PDT

Why doping polycrystalline solar cells improves efficiency

While there is certainly a fair amount of warranted pessimism about the future of our planet, there is also warranted optimism – at least that’s what Professor Dong-Seon Lee of the Gwangju Institute of Science and Technology in Korea believes. Lee researches solar cells and has a vision of the future that some might call revolutionary:

"When eco-friendly, inexpensive, versatile, and efficient solar cells are developed, all thermal and nuclear power plants will disappear, and solar cells installed over the ocean or in outer space will power our world."

Lee’s recent work on this topic is published in a new paper in Advanced Science. In it, Lee’s team provides insight on why the now-common practice of doping polycrystalline solar cells actually works – information that until now has been an enigma.

Doping refers to the distortion of a crystal structure by introducing an impurity. In the case of polycrystalline solar cells, this can be done by melting together crystals called CZTSSe with earth-abundant and eco-friendly alkali metals, like sodium and potassium. This process makes solar cells not only more efficient in light to electricity conversion but also allows them to be cheap and small.  

In this study, Lee’s team looked at the composition and electric charge transport properties of CZTSSe cells doped with layers of sodium fluoride of different thicknesses. They found that a thickness of 25 nanometers proved to produce the highest light-to-electricity conversion efficiency, a concept termed fill factor.

“When doping is optimized, the fabricated device shows sufficient built‐in potential and selects a better carrier transport path by the high potential difference between the intragrains and the grain boundaries,” write the authors. “On the other hand, when doping is excessive, the device shows low contact potential difference and fill factor and selects a worse carrier transport path even though the built‐in potential becomes stronger. The fabricated CZTSSe solar cell on a flexible metal foil optimized with a 25 nm thick NaF doping layer achieves a fill factor of 62.63%, thereby clearly showing the enhancing effect of Na doping.”

Photo: Pixabay

Expanding the understanding of polycrystalline solar cells will help to create the vision that Lee sees as possible. "We have developed flexible and eco-friendly solar cells that will be useful in many ways in our real lives, from building-integrated photovoltaics and solar panel roofs, to flexible electronic devices," Professor Lee concludes.

Sources: Advanced Science, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
AUG 21, 2020
Chemistry & Physics
MIT Scientists Found the Causes Behind Dull Blades
AUG 21, 2020
MIT Scientists Found the Causes Behind Dull Blades
The reason why we replace our shaving blades so often is because no matter how sharp they start as they eventually get d ...
SEP 03, 2020
Chemistry & Physics
Designing the most effective - and comfortable- face mask yet
SEP 03, 2020
Designing the most effective - and comfortable- face mask yet
Engineers from Georgia Institute of Technology have designed a facemask that is comfortable, safe, and – best of a ...
SEP 26, 2020
Microbiology
Eliminating Biofilms with Green Tea-Derived Nanobots
SEP 26, 2020
Eliminating Biofilms with Green Tea-Derived Nanobots
Bacteria are everywhere in our world, and while the vast majority are harmless, some can cause dangerous infections. Bac ...
OCT 02, 2020
Chemistry & Physics
A New Way of Building Houses: 3-D Printing with Clay
OCT 02, 2020
A New Way of Building Houses: 3-D Printing with Clay
Our ancestors had a long history of building dwelling structures using clay and plant-based fibrous materials. Even thes ...
OCT 23, 2020
Chemistry & Physics
The Ever-Evolving Battle to Fight Corrosion in Nuclear Reactors
OCT 23, 2020
The Ever-Evolving Battle to Fight Corrosion in Nuclear Reactors
Since its birth in the early 20th century, atomic research has brought mostly positive impacts to our lives. This week i ...
NOV 17, 2020
Clinical & Molecular DX
Tumor Stiffness Linked to Its Aggressiveness
NOV 17, 2020
Tumor Stiffness Linked to Its Aggressiveness
  As tumors grow, tiny areas at their cores are found to become stiff prior to metastasis, or the spread of cancer ...
Loading Comments...