JAN 03, 2021 8:59 AM PST

Cracking the structural code of nacre

Researchers have finally figured out how nacre – also known as mother of pearl – forms its perfect structure. As one of the strongest naturally-occurring materials known to science, nacre is coveted for its highly periodic and uniform structure – but until now how that structure forms has been an enigma.

"In the very beginning, the layered mineral-organic tissue is full of structural faults that propagate through a number of layers like a helix. In fact, they look like a spiral staircase, having either right-handed or left-handed orientation," says Dr. Igor Zlotnikov, research group leader at the B CUBE -- Center for Molecular Bioengineering at TU Dresden. "The role of these defects in forming such a periodic tissue has never been established. On the other hand, the mature nacre is defect-free, with a regular, uniform structure. How could perfection emerge from such disorder?"

In order to figure out the answer to this question, a collaboration of scientists from Zlotnikov’s group and the European Synchrotron Radiation Facility (ESRF) used synchrotron-based holographic X-ray nano-tomography to observe how nacre develops.

"The combination of electron-dense and highly periodical inorganic platelets with delicate and slender organic interfaces makes nacre a challenging structure to image. Cryogenic imaging helped us to obtain the resolving power we needed," explains Dr. Pacureanu from the X-ray Nanoprobe group at the ESRF.

"Nacre is an extremely fine structure, having organic features below 50 nm in size. Beamline ID16A at the ESRF provided us with an unprecedented capability to visualize nacre in three-dimensions," adds Dr. Zlotnikov.

Photo: Pixabay

In order to understand the images that they captured, the researchers trained a neural network to separate the layers of nacre, thus allowing them to visualize the growth behavior of the structure over time. What they saw was unexpected, reports Science Daily:

“Defects of opposite screw direction were attracted to each other from vast distances. The right-handed and left-handed defects moved through the structure, until they met, and canceled each other out. These events led to a tissue-wide synchronization. Over time, it allowed the structure to develop into a perfectly regular and defect-free.”

The researchers say their discovery not only sheds light on how nacre forms - which has remained a mystery for years - but could also inform the future development of biogenic structures

Sources: Nature Physics, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
FEB 14, 2021
Chemistry & Physics
Enhancing fluorescence signals from biomarkers using nanotechnology
FEB 14, 2021
Enhancing fluorescence signals from biomarkers using nanotechnology
In a new study published in Nature Communications, researchers from Ludwig-Maximilians-Universität München (LM ...
APR 08, 2021
Space & Astronomy
The Stardust That Made Us & Our Planet
APR 08, 2021
The Stardust That Made Us & Our Planet
You may know that the human body is made up of elements that almost all originated in stars, and many of those elements ...
APR 13, 2021
Clinical & Molecular DX
A Color-Changing "Invisible Tattoo" for Long-Term Health Monitoring
APR 13, 2021
A Color-Changing "Invisible Tattoo" for Long-Term Health Monitoring
German researchers have developed an innovative method for continuously tracking and monitoring biomarkers and drugs cir ...
APR 14, 2021
Chemistry & Physics
Amping up the fight against superbugs with black phosphorus
APR 14, 2021
Amping up the fight against superbugs with black phosphorus
A research team from RMIT University in Melbourne, Australia, has devised an ultra-thin 2D antimicrobial coating that co ...
APR 15, 2021
Chemistry & Physics
What can snakes teach us about durability?
APR 15, 2021
What can snakes teach us about durability?
A team of biologists, chemists, and engineers are studying snake locomotion in order to help them better design durable ...
MAY 14, 2021
Chemistry & Physics
New way to convert dangerous volatile organic compounds
MAY 14, 2021
New way to convert dangerous volatile organic compounds
The emission of volatile organic compounds (VOCs) from power plants and chemical manufacturing, as well as other industr ...
Loading Comments...