MAY 03, 2021 9:14 AM PDT

What do advances in 3D printing techniques mean for tissue engineering?

New investigations into the field of customized tissue engineering are reported in the journal Bioprinting. The study was conducted by a team from Washington State University School of Mechanical and Materials Engineering collaborating with WSU's Gene and Linda Voiland School of Chemical Engineering and Bioengineering, the University of Texas-San Antonio (UTSA), Morehouse College, and University of Rochester.

The study highlights developments in bioinks that can be used to 3D print scaffolds of real biological tissues to make complex, porous, and personalized structures. Professor Arda Gozen who worked on the project says that such bioinks could one day allow doctors to print out tissue structures specific to an individual patient.

But for that to happen, the scaffolds must match the structure of natural cells. "The success of this method in manufacturing functional tissues relies heavily on how well the fabricated structures mimic the native tissues," Gozen said. "If you want to grow cells and turn them into functional tissue, you need to match the mechanical environment of the native tissue."

The scaffold that the researchers have developed to address that requirement is composed of gelatin, gum Arabic, and sodium alginate, which work as thickening agents so that the scientists can manipulate the chemical bonds of the cells without affecting the material. "That gives you the capability of tuning the properties without changing the scaffold design and gives you an additional degree of freedom that we are seeking."

While they say their work is coming along, actually printing a structure that comes close to the complexity of nature is a challenge. "You're not assembling Legos here. It's always about replicating nature that works with the body," Gozen said. "You can make living structures, but they look nothing like the native tissue. Precision is key because there is no single mechanical property target for a single piece of tissue."

Sources: Bioprinting, Science Daily

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JAN 29, 2021
Space & Astronomy
The Potential Range of Mass of Dark Matter Narrows Dramatically
JAN 29, 2021
The Potential Range of Mass of Dark Matter Narrows Dramatically
The part of the universe that we can see, which includes our planet and stars, makes up only around a quarter of the mas ...
FEB 23, 2021
Chemistry & Physics
Converting methane in natural gas into liquid methanol at room temperature
FEB 23, 2021
Converting methane in natural gas into liquid methanol at room temperature
New research detailed in the journal Proceedings of the National Academy of Sciences describes a recent development ...
MAR 03, 2021
Chemistry & Physics
Exploring the swirlonic state of active matter
MAR 03, 2021
Exploring the swirlonic state of active matter
Research published in the journal Scientific Reports describes a new kind of active matter, termed a swirlonic state. As ...
MAR 30, 2021
Cell & Molecular Biology
Cells Can 'Walk' On a Nanofiber Tightrope
MAR 30, 2021
Cells Can 'Walk' On a Nanofiber Tightrope
When cells were given a tiny 'tightrope' they 'walked' it, and researchers have discovered a new kind of cellular moveme ...
APR 07, 2021
Chemistry & Physics
New developments in highly-effective cobalt catalysts
APR 07, 2021
New developments in highly-effective cobalt catalysts
In a new study published in JACS Au, Osaka University researchers report having developed a single-crystal cobalt phosph ...
MAY 13, 2021
Chemistry & Physics
Why does cement deteriorate so quickly?
MAY 13, 2021
Why does cement deteriorate so quickly?
New research published in the journal PLOS ONE details the discovery of trace quantities of organic matter in concrete s ...
Loading Comments...