OCT 25, 2021 9:59 AM PDT

Illuminating Blips in Blood Flow to the Brain

WRITTEN BY: Tara Fernandez


 

Just like an athlete needs to consume a huge number of calories to support their rigorous training regimes, neurons in the brain need significant amounts of oxygen and glucose to function properly. To fulfill this demand, around three cups of blood flow to the brain every minute, supplying neural tissue with the nutrients it needs and carting away toxins. This blood supply is termed the cerebral blood flow or CBF. 

Neuroscientists have connected the dots between alterations or disruptions in CBF and the onset of neurological disorders, including seizures, Alzheimer’s disease, migraines, and stroke. These links suggest that measuring and tracking the CBF may represent a viable diagnostic tool. For this purpose, physicians have been relying on a non-invasive diagnostic technique known as speckle imaging. 

Here, a series of short-exposure shots are taken of the patient’s head to gain insights into physiological changes occurring beneath the skull. However, speckle imaging data doesn’t paint a complete picture—the direction and speed of CBF are missing, making it impossible for neurologists to pick up and monitor changes in blood flow to the brain.

Work by a team of Korean researchers is paving the way for next-gen CBF imaging technology. The scientists unveiled “optical speckle image velocimetry” or OSIV in a study published in the journal Optica. This new technology allows for the quantitative analysis of CBF, providing unprecedented data on the speed and direction of blood flow to the brain in real-time. 

According to the study, OSIV is powered by particle image velocimetry to measure blood flow speeds of up to 7 mm/s. To validate OSIV’s full potential, the researchers used an animal model of stroke. With this innovative new technique, they could access precise, quantitative blood flow measurements before and after stroke without the need for a tracer or high-speed camera. 

Lead researcher Euiheon Chung is optimistic that such technology will soon find its way to clinical diagnostic facilities. “Our study can be used to understand the vascular mechanisms and test new drugs for treating vascular-related diseases such as stroke, AD, and diabetes,” said Chung





 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
SEP 07, 2021
Clinical & Molecular DX
Dogs Can Pick Up the 'Seizure Smell', Alert Their Owners
SEP 07, 2021
Dogs Can Pick Up the 'Seizure Smell', Alert Their Owners
Dogs offer so much more than companionship and unconditional love. New research shows that for patients with epilepsy, t ...
SEP 16, 2021
Clinical & Molecular DX
Medical Opinions Are Often Divided, but Tech Can Bring Them Together
SEP 16, 2021
Medical Opinions Are Often Divided, but Tech Can Bring Them Together
Patients place their faith in medical professionals for making sound clinical decisions based on their diagnoses. But wh ...
OCT 06, 2021
Technology
New Sensor Could Detect Antibiotics In Your Breath
OCT 06, 2021
New Sensor Could Detect Antibiotics In Your Breath
Antibiotics are the cornerstone of treatment for bacterial infections. Though antibiotic resistance caused by the incorr ...
OCT 11, 2021
Genetics & Genomics
A Genetic Risk Factor is Shared by Alzheimer's and Severe COVID-19
OCT 11, 2021
A Genetic Risk Factor is Shared by Alzheimer's and Severe COVID-19
While amyloid plaques are a hallmark of Alzheimer's disease, the neurological disorder has also been linked to inflammat ...
OCT 12, 2021
Clinical & Molecular DX
Tiny Fragments of RNA in the Blood Signal Dementia Risk
OCT 12, 2021
Tiny Fragments of RNA in the Blood Signal Dementia Risk
Scientists have discovered a novel biomarker in the blood that acts as an early warning sign for dementia: microRNA. The ...
DEC 23, 2021
Clinical & Molecular DX
Broken Cell "Cleaning Systems" and Schizophrenia
DEC 23, 2021
Broken Cell "Cleaning Systems" and Schizophrenia
A new study in Molecular Psychiatry has brought forward two new biomarkers of schizophrenia and opened up the ...
Loading Comments...