SEP 30, 2020 11:11 AM PDT

Iron levels limit coral resiliency and growth

A new study from Penn State researchers reports that corals’ resiliency to climate change depends on environmental iron levels, suggesting that low iron levels limit coral growth and repair. Their findings are published in the Journal of Phycology.

There are concerns that environmentally available iron will decrease as ocean temperatures warm from climate change. For that reason, the team wanted to investigate how iron levels would influence the heat tolerance of corals, and more specifically, the microalgae that live in corals.

"In this study, we found that limiting the available iron lowered the heat tolerances of two species of microalgae, which potentially could have cascading effects on the coral and on the reef ecosystem," said author Hannah Reich.

It has been previously noted that the photosynthetic microalgae that live within coral cells require high concentrations of iron. These microalgae are crucial to corals’ wellbeing because they provide up to 90 % of the coral's nutritional needs through photosynthesis.

"Corals are the foundation for one of the most important ecosystems in the world. They support significant amounts of biodiversity, protect our shorelines from storms, provide habitat for our fisheries, and boost our economies with their opportunities for tourism. Climate change affects not only the coral, but also their symbiotic microalgae and the partnership between them,” commented said Todd LaJeunesse, professor of biology at Penn State. “In this study, we explored two aspects of climate change--warming waters and altered amounts of trace metals like iron--on the algae."

The study found that under conditions of high temperatures and limited iron, both coral species grew poorly compared to conditions of moderate temperatures and normal iron levels. "High temperatures increase metabolic demands, which forces the microalgae to work harder function properly," said Reich. "It also increases dependence on processes that require iron, like photosynthesis and assimilating other nutrients. We found that under high temperatures, the microalgae needed more than five times as much iron to reach typical, exponential growth rates."

Photo: Pixabay

The team also discovered that limited iron availability at high temperatures additionally adversely impacts the photosynthetic ability of the algae by decreasing their efficiency and ultimately their growth.

The researchers hope to continue their investigations in order to better understand how trace metal requirements change in different conditions in the field. "While it is important to understand how access to iron supplies can impact the ability of corals to respond to climate change stressors, there is still a dire need to reduce carbon dioxide emissions to combat the climate crisis," concluded Reich.

Sources: Journal of Phycology, Eureka Alert

About the Author
  • Kathryn is a curious world-traveller interested in the intersection between nature, culture, history, and people. She has worked for environmental education non-profits and is a Spanish/English interpreter.
You May Also Like
JUL 20, 2020
Earth & The Environment
Ectotherm thermal physiology puts amphibians at even greater climate risk than previously recognized
JUL 20, 2020
Ectotherm thermal physiology puts amphibians at even greater climate risk than previously recognized
Things aren’t looking good for amphibians. According to new research published in Global Change Biology from Simon ...
AUG 05, 2020
Plants & Animals
Satellite Images Reveal New Emperor Penguin Colonies
AUG 05, 2020
Satellite Images Reveal New Emperor Penguin Colonies
The British Antarctic Survey (BAS) and the European Space Agency (ESA) recently shared excellent news about emperor peng ...
AUG 21, 2020
Earth & The Environment
The megadrought that ended the Green Sahara
AUG 21, 2020
The megadrought that ended the Green Sahara
Imagine Northern Africa, now inhabited by the desiccated Sahara desert, as a green oasis, covered by plants and trees. T ...
SEP 06, 2020
Earth & The Environment
Can we decrease fertilizer needs by modifiying plant proteins?
SEP 06, 2020
Can we decrease fertilizer needs by modifiying plant proteins?
Plants have natural fertilizers built into their physiological structures, reports new research published in the journal ...
SEP 08, 2020
Earth & The Environment
Huge international supply chains account for 20% of global emissions
SEP 08, 2020
Huge international supply chains account for 20% of global emissions
This may come as a surprise to exactly no one, but multinational companies are the culprits of the highest levels of car ...
OCT 15, 2020
Health & Medicine
An Estimated 38 Million People were Exposed to Polluted Wildfire Smoke
OCT 15, 2020
An Estimated 38 Million People were Exposed to Polluted Wildfire Smoke
As wildfires continue to burn record-breaking acreages along the west coast of the United States and inland regions, hos ...
Loading Comments...