NOV 17, 2020 8:03 AM PST

Why Mutations in RRP7 Cause a Congenital Brain Disorder

WRITTEN BY: Carmen Leitch

A large family with some members that have a rare brain disorder has helped scientists learn more about both brain development and a signaling antenna that's present on many types of cells called the primary cilium. This work, which has been reported in Nature Communications, has provided new insight into the regulation of cerebral cortex development. This region of the brain has been linked to awareness and perception, thought, language, and consciousness.

The picture shows the brain of a normal zebrafish larvae (left) and a larvae with microcephaly (right). / Credit: Assist.Prof. Canan Doganli, University of Copenhagen

Children in this family have primary microcephaly, a disorder in which the size of the cerebral cortex is reduced, and cognitive dysfunction results to varying degrees. The children with the disorder were found to be carrying genetic mutations in both copies of a gene called RRP7A (the mutations were homozygous).

In this work, the researchers used stem cells as well as a zebrafish model to analyze the impact of these mutations. Their work showed that RRP7A is critical for the formation and proliferation of neurons during development, which can explain why mutations in the gene can have such profound consequences. It may also show why the brain is affected by the mutations while other tissues remain unperturbed.

"Our discovery is surprising because it reveals hitherto unknown mechanisms involved in the development of the brain. In addition, it highlights the value of research in rare disorders, which is important both for the patients and family affected by the disease but also beneficial for society in the form of new knowledge about human biology," said study author and Professor Lars Allan Larsen of the Department of Cellular and Molecular Medicine at the University of Copenhagen (UCPH).

The RRP7A mutations were found to disrupt the function of a structure non the surface of cells that is crucial for cell signaling and sensing the cellular environment, called the primary cilium. Cilia are also involved in the growth of new neurons. Mutations in genes that affect primary cilia are called ciliopathies, and brain disorders are a feature of several of them.

"Our results open a new avenue for understanding how primary cilia control developmental processes, and how certain mutations at these antenna-like structures compromise the formation of tissues and organs during development. To this end, we have already initiated a series of investigations to understand the mechanisms by which RRP7A regulates ciliary signaling to control formation and organization of neurons in the brain, and how defects in this signaling may lead to brain malformation and cognitive disorders," said Professor Søren Tvorup Christensen of the Department of Biology at UCPH.

Sources: AAAS/Eurekalert! via Faculty of Science - University of Copenhagen, Nature Communications

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
SEP 06, 2020
Cell & Molecular Biology
The Beginnings of a Protein Are Captured in 3D
SEP 06, 2020
The Beginnings of a Protein Are Captured in 3D
There are many genes in the DNA that gives rise to an organism, and genes that code for protein are a critical part of t ...
SEP 06, 2020
Genetics & Genomics
Climate Change Caused a Mastodon Migration
SEP 06, 2020
Climate Change Caused a Mastodon Migration
Around 11,000 years ago, megafauna of the earth began to go extinct. Mastodons were some of the largest land animals liv ...
SEP 21, 2020
Genetics & Genomics
Replicating the Genome With a Twist
SEP 21, 2020
Replicating the Genome With a Twist
Cold Spring Harbor Laboratory scientists have used cryo-EM to learn more about how the human genome is replicated.
SEP 25, 2020
Genetics & Genomics
How Genetics Can Inform Our Understanding of ADHD
SEP 25, 2020
How Genetics Can Inform Our Understanding of ADHD
Scientists have discovered that African-Americans and people of European ancestry may have different genetic causes of a ...
NOV 20, 2020
Genetics & Genomics
How a Genetic Mutation Can be Good for Carriers
NOV 20, 2020
How a Genetic Mutation Can be Good for Carriers
Genetic mutations are usually connected to disease, but there are some that are known to improve people's lives.
DEC 03, 2020
Cell & Molecular Biology
7 Considerations When Purchasing a Microvolume UV-Vis Spectrophotometer
DEC 03, 2020
7 Considerations When Purchasing a Microvolume UV-Vis Spectrophotometer
It all started with the Thermo Scientific™ NanoDrop™ 1000 as the first microvolume UV-Vis spectrophotometer, ...
Loading Comments...