AUG 31, 2021 8:30 PM PDT

A Method to Detect Genetically Modified Animals in the Environment

WRITTEN BY: Carmen Leitch

Genetically modified mice, fruit flies, and zebrafish are commonly used in research. Scientists have now developed a method for detecting the engineered genes they carry and may leave traces of in the environment. This tool could be used to locate genetically modified animals that have escaped the research lab or been released into the world. This study showed that transgenes from mice, fruit flies, and tetra fish that might leave remnants of their DNA behind in water or soil, so-called environmental DNA (eDNA) can be identified. The work has been reported in PLOS One.

A zebrafish / Image credit: Max Pixel

“Until now, no one had applied these environmental DNA methods to genetically modified animals, even though they are already in the wild,” said McGill University graduate student and first study author Charles Xu. “Detection of animal transgenes from eDNA can be very useful because it can tell you whether genetically modified animals are there without the need to find them.”

Now that the cost and time required to perform genetic analysis and sequencing has been dramatically reduced, it's become much easier to analyze eDNA, sometimes by simply sequencing all of the DNA in a sample and using computational tools to identify the species represented by the sample, though this method does not require that. It relies on simply amplifying common transgenes that may be in eDNA using PCR.

It's also become far easier to create transgenic animals since the creation of the CRISPR-Cas9 gene editing tool, leading to a huge increase in the number of these animals. There is concern that some research animals could make their way into the wild.

Since aquarium fish that have been genetically modified to glow are already on the market, that may mean that they have already been released. Genetically modified mosquitoes have already been intentionally put into the wild. Animals that glow are often genetically modified to carry GFP, green fluorescent protein, which was found in the jellyfish Aequorea victoria. It's now a relatively straightforward process to add the DNA sequence of GFP to the DNA sequence of a gene of interest; the resulting protein will glow when it's produced in the modified organism, like mice or fish. Then researchers can monitor that protein in the tissues of animals. But otherwise, these genetically modified animals may appear normal.

“Because genetically modified animals are often indistinguishable from their natural counterparts based on appearance alone, environmental DNA or eDNA methods could be especially useful for early detection and monitoring purposes,” Xu added. “That is especially true in cases where these animals may escape from the lab or the farm, move to places they do not belong, or crossbreed with natural animals.”

Sources: McGill University, PLOS One

About the Author
  • Experienced research scientist and technical expert with authorships on over 30 peer-reviewed publications, traveler to over 70 countries, published photographer and internationally-exhibited painter, volunteer trained in disaster-response, CPR and DV counseling.
You May Also Like
JUL 26, 2021
Genetics & Genomics
A Region of Non-Coding DNA That May Help Regulate Telomere Length is ID'ed
JUL 26, 2021
A Region of Non-Coding DNA That May Help Regulate Telomere Length is ID'ed
Many types of cells have to be replenished continuously throughout our lives, and the genome in the nucleus of those cel ...
AUG 03, 2021
Neuroscience
Is it the zombie apocalypse? Nope, just some zombie genes
AUG 03, 2021
Is it the zombie apocalypse? Nope, just some zombie genes
Scientists trace the time duration of postmortem cell activity and gene expression in brain tissue to facilitate researc ...
SEP 05, 2021
Genetics & Genomics
New Comb Jelly Species Revealed by Genetic Study
SEP 05, 2021
New Comb Jelly Species Revealed by Genetic Study
Genetic research has now revealed more about comb jellies, also known as ctenophores, which are delicate and mysterious ...
SEP 07, 2021
Plants & Animals
All dogs may be descended from the same 23,000-year-old Siberian ancestor
SEP 07, 2021
All dogs may be descended from the same 23,000-year-old Siberian ancestor
New research suggests that all modern dogs are descended from the same 23,000-year-old Siberian ancestor
OCT 08, 2021
Genetics & Genomics
Deciphering a Massive Genome
OCT 08, 2021
Deciphering a Massive Genome
The human genome is about 6 billion base pairs, and there are plants with genomes that are much, much longer.
OCT 18, 2021
Plants & Animals
How Have the Fukushima & Deepwater Horizon Disasters Impacted Wildlife?
OCT 18, 2021
How Have the Fukushima & Deepwater Horizon Disasters Impacted Wildlife?
Two new, unrelated studies have examined how very different environmental disasters affected wildlife in the areas where ...
Loading Comments...