AUG 12, 2021 7:00 AM PDT

Anticoagulants Target a Weak Spot in Coronavirus Variants

WRITTEN BY: Tara Fernandez

Australian researchers have found a new molecular binding site on the coronavirus that causes COVID-19, a discovery that paves the way for new drug targets to treat COVID-19.

The virus’ spike protein binds to heparan sulfate on the surface of host cells, which forms the first step in the infection cascade. This interaction has been in the research spotlight as scientists scrambled to identify drugs, vaccines, and antibodies capable of blocking the spike protein’s receptor-binding domain, or RBD, from latching onto human cells.

Now, scientists discovered a novel binding site on a different region of the coronavirus’ spike protein known as the N-terminal domain (NTD). SARS-CoV-2 variants often have mutations in this NTD site.

Antibodies produced by patients that recovered from COVID-19 were found to bind to the NTD to neutralize the virus. This clue led the research team to hypothesize that the same site could be targeted to stop the virus from infecting human cells.

“Therefore, targeting the NTD site with molecules like heparin (or heparin mimetics), a known anticoagulant drug similar to HS, is a possible strategy to stop the virus binding to cells and infecting them,” explained Zachariah Schuurs, one of the investigators. Anticoagulants are typically administered to prevent blood clots and reduce patients’ chances of developing life-threatening conditions such as strokes and heart attacks.

According to the researchers, there is an urgent need to expand our current arsenal of therapeutic weapons against the coronavirus, particularly given the rapid spread of dangerous SARS-CoV-2 variants. Vaccine coverage is still low in many parts of the world, increasing the likelihood that vaccine-resistant variants will emerge. Indeed, variants of concern that are more contagious and cause more severe infections have emerged throughout the pandemic.

In their study, the scientists used 3-dimensional molecular mapping techniques to show how negatively charged heparin (an anticoagulant molecule) could bind to positively charged mutations in the spike protein. This opens the door to heparin being used as a potential broad-spectrum antiviral drug against current and emerging SARS-CoV-2 variants.

 



Sources: QUT News, Computational and Structural Biotechnology Journal.

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
AUG 31, 2021
Clinical & Molecular DX
Five Questions to Help You Select the Best Cellular Stain
AUG 31, 2021
Five Questions to Help You Select the Best Cellular Stain
Cellular stains are organic fluorescent dyes or fluorescent conjugates designed to localize to a specific organelle or c ...
SEP 02, 2021
Immunology
Hobit Activates Cancer-Killing Immune Cells
SEP 02, 2021
Hobit Activates Cancer-Killing Immune Cells
Innate lymphoid cells, or ILCs, are specialized immune cells that are increasingly entering the research spotlight. Thes ...
SEP 14, 2021
Drug Discovery & Development
A novel drug that targets the removal of pathogenic antibodies in myasthenia gravis
SEP 14, 2021
A novel drug that targets the removal of pathogenic antibodies in myasthenia gravis
Myasthenia gravis is a chronic autoimmune disorder characterized by muscle weakness and fatigue. The disorder leads to a ...
SEP 23, 2021
Cardiology
Curbing Adverse Cardiovascular Outcomes Through Influenza Vaccination
SEP 23, 2021
Curbing Adverse Cardiovascular Outcomes Through Influenza Vaccination
Influenza is a severe infectious disease. According to the Centers for Disease Control and Prevention the H1N1 strain of ...
OCT 14, 2021
Immunology
'Bio-Betters' Form the Next Wave of Cancer Therapies
OCT 14, 2021
'Bio-Betters' Form the Next Wave of Cancer Therapies
  Antibodies are blood proteins with highly specialized functions: to recognize and eliminate bacteria, viruses, an ...
OCT 12, 2021
Immunology
Cancer Drug Helps Alzheimer's Mice Remember
OCT 12, 2021
Cancer Drug Helps Alzheimer's Mice Remember
What if a drug—specifically developed to treat one disease—had the potential to address other non-related co ...
Loading Comments...