SEP 23, 2021 5:00 AM PDT

Enhanced Hamster Cells as Super Drug Factories

WRITTEN BY: Tara Fernandez

Antibodies are highly specialized proteins produced by the immune system that stick on to foreign invaders in the body with exquisite specificity, marking them for destruction. Drug developers have harnessed these powerful molecules for their therapeutic effects—because they’re so specific, they have fewer side effects than other drug formats.

In recent years, antibodies have risen to become the top-selling drugs in the pharmaceutical market, used to treat patients with everything from cancer to autoimmune conditions. The downside, however, is that the process of manufacturing antibody drugs is extremely expensive.

Pharmaceutical manufacturers mass-produce these biologics using large cell culture vats containing Chinese hamster ovary (CHO) cells. These genetically engineered hamster cells divide quickly and flourish in these carefully controlled laboratory conditions, churning out antibody proteins that are subsequently purified as treatments. Keeping CHO cell factories going is costly due to the specially-formulated cell culture media they require.

Now, a research and industry collaboration has identified a way of turbocharging CHO cells to ramp up their antibody production, slashing drug production costs. Scientists at the Bioprocessing Technology Institute screened a library of nearly 3,000 small interfering RNAs (or siRNAs), short sequences of RNA that can regulate the expression of genes in cells. They discovered four gene targets that influenced antibody production levels in CHO cells, one of which was Cyp1a2.

Using CRISPR-Cas9 technology, the scientists then snipped out these genes and observed exciting changes in the resulting engineered CHO cells: they produced about 1.7 times more antibodies than the unaltered cells. The researchers hypothesize that future work to screen more siRNA libraries will reveal even more potential drug targets that could further boost biotherapeutic manufacturing outputs.
 

About the Author
  • Tara Fernandez has a PhD in Cell Biology and has spent over a decade uncovering the molecular basis of diseases ranging from skin cancer to obesity and diabetes. She currently works on developing and marketing disruptive new technologies in the biotechnology industry. Her areas of interest include innovation in molecular diagnostics, cell therapies, and immunology. She actively participates in various science communication and public engagement initiatives to promote STEM in the community.
You May Also Like
NOV 03, 2021
Plants & Animals
A Samoan Plant May Reduce Inflammation as Well as Ibuprofen
NOV 03, 2021
A Samoan Plant May Reduce Inflammation as Well as Ibuprofen
To the people of Samoa, the medicinal qualities of a tree known as matalafi are well known. Now scientists are bringing ...
NOV 09, 2021
Immunology
Wikipedia, but Make It Immune Cells
NOV 09, 2021
Wikipedia, but Make It Immune Cells
Scientists have established the first searchable database of complex immune data, providing the foundations for a new er ...
DEC 09, 2021
Immunology
Stopping the Spread of COVID by Chewing Gum?
DEC 09, 2021
Stopping the Spread of COVID by Chewing Gum?
Scientists have developed a special chewing gum that could reduce the risk of spreading SARS-CoV-2. The technology was d ...
JAN 07, 2022
Cancer
Crossing the Blood-Brain Barrier: Improving Experimental Models to Study Drug Delivery
JAN 07, 2022
Crossing the Blood-Brain Barrier: Improving Experimental Models to Study Drug Delivery
The blood-brain barrier (BBB) describes the complex vasculature network that delivers oxygen and nutrients to the brain. ...
JAN 13, 2022
Immunology
Convalescent Plasma Therapy 'Keeps up' With COVID Variants
JAN 13, 2022
Convalescent Plasma Therapy 'Keeps up' With COVID Variants
A recent study has demonstrated that COVID-19 convalescent plasma treatment (or blood from individuals who have recovere ...
JAN 10, 2022
Microbiology
A Specific Microbe is Associated with Worsening Lupus
JAN 10, 2022
A Specific Microbe is Associated with Worsening Lupus
We are closely connected to the microbes in our gastrointestinal tract. They have a significant influence on various asp ...
Loading Comments...