Proteomics technology has improved dramatically over the last decade. The technology developments have largely been directed around instrument hardware, where instruments have been developed that scan faster, are more sensitive, and have greater mass measurement accuracy. However, the basic workflow has remained largely unchanged -- mass spectrometers are directed toward the acquisition of tandem mass spectra on the most abundant molecular species eluting from a chromatography column. More recently, efforts have been focused on the acquisition of mass spectrometry data on target peptides of interest. With improvements in instrument hardware and instrument control software, the practical experimental difference between a targeted and discovery proteomics is beginning to become blurred. These analyses are a significant change from the traditional proteomics workflow and have required the development of novel computational strategies to analyze, visualize, and interpret these data. We will present work illustrating our efforts in the development of targeted proteomics and provide a vision for challenges that still need to be overcome before these analyses become routine and replace more traditional discover proteomics methodology.