MENU

The Spatial Reach of Brain Wave Synchronization

Presented at: Neuroscience 2022
C.E. Credits: P.A.C.E. CE Florida CE
Speaker

Abstract

Brain wave synchronization, also called neuronal coherence, is a fundamental mechanism of communication in the brain, where synchronized field potentials coordinate synaptic and spiking events to support plasticity and learning. Although the spread of field potentials has garnered great interest, little is known about the spatial reach of neuronal coherence. Here we used simultaneous recordings from electrocorticography grids and high-density microelectrode arrays to estimate the spatial reach of neuronal coherence and spike-field coherence (SFC) across frontal, temporal, and occipital cortices during cognitive tasks in humans. We observed the strongest coherence within a 2-3 cm distance from the microelectrode arrays, potentially defining an effective range for local communication. This range was consistent across brain regions, frequencies, and cognitive tasks. The magnitude of coherence showed power law decay with increasing distance from the microelectrode arrays, where the highest coherence occurred between ECoG contacts, followed by coherence between ECoG and deep cortical LFP, and then SFC (ECoG > LFP > SFC). The spectral frequency of coherence also affected its magnitude. Alpha coherence was generally higher than other frequencies for signals nearest the microelectrode arrays, whereas delta coherence was higher for signals that were farther away. Action potentials in all brain regions were most coherent with the phase of alpha oscillations, which suggests that alpha waves could play a larger, more spatially local role in spike timing than other frequencies. These findings provide a deeper understanding of the spatial and spectral dynamics of neuronal coherence, further advancing knowledge about how activity propagates across the human brain.

Learning Objectives:

1.    Describe the underlying nature of brain waves.

2.    Explain the importance of brain wave synchronization to cognition and behavior.

3.    Identify factors that play a role in how synchronization spreads across the brain.


Show Resources
You May Also Like
APR 28, 2022 8:00 AM PDT
APR 28, 2022 8:00 AM PDT
Date: April 28, 2022 Time: 8:00am (PDT), 11:00am (EDT), 5:00pm (CEST) Human pluripotent stem cells (PSCs) and their derivatives hold great potentials in...
DEC 01, 2021 7:00 AM PST
C.E. CREDITS
DEC 01, 2021 7:00 AM PST
Date: December 01, 2021 Time: 7:00am (PST), 10:00am (EST) In the era of immuno-oncology, there is a growing need for the identification of new biomarkers predictive for sensitivity to anti-P...
NOV 30, 2021 10:00 AM PST
C.E. CREDITS
NOV 30, 2021 10:00 AM PST
Date: November 30, 2021 Time: 10:00am (PDT), 1:00pm (EDT) The prevalence of thyroid disease worldwide has served as a catalyst for healthcare providers to study various tools and methods to...
MAY 19, 2022 8:00 AM PDT
MAY 19, 2022 8:00 AM PDT
Date: May 19, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Mass spectrometry (MS)-based proteomic technologies are increasingly applied in a clinical context for disease classific...
C.E. CREDITS
Alzheimer’s and Parkinson’s diseases (AD, PD) are the two most common neurodegenerative disorders. Despite their debilitating effects and increasing prevalence in our society, no...
MAY 05, 2022 9:00 AM PDT
C.E. CREDITS
MAY 05, 2022 9:00 AM PDT
Date: May 5, 2022 Time: 9:00am (PDT), 12:00pm (EDT) In a time when there is global urgency around producing and deploying as many COVID-19 vaccines as...
Loading Comments...
Show Resources