MENU
APR 23, 2020 7:30 AM PDT

Keynote Presentation: The Massively Parallel Sequencing (MPS) Revolution

Speaker

Abstract

The development of automated DNA sequencers using fluorescent di-deoxy nucleotide sequencing and capillary electrophoresis made it possible to generate the first draft sequences of the human genome about 20 years ago. This information revolutionized our understanding of the organization of the human genome, but the cost for doing this was several hundred million dollars. The solution to dramatically decreasing the cost of sequencing was the development of technologies that all depended upon the simultaneous sequencing of a very large number of DNA molecules which was termed massively parallel sequencing (MPS). There are two generations of these technologies. The first generation depended upon amplifying individual DNA fragments and then determining the sequence of those amplified fragments. The amplification process and the subsequent sequencing of those fragments could only be performed on very short fragments and thus all first generation MPS are short-read technologies. There are two strengths to these approaches and that is sequence accuracy and ultimately tremendous sequence output. In my talk I will focus on the various first generation MPS technologies that were developed and their strengths and weaknesses. I will also describe how with the use of these technologies it became possible to increase sequence output (and correspondingly decrease sequence costs) from hundreds of millions of dollars two what is now approaching $100 per genome. I will also describe how this will change just about everything in our society. Other speakers in this session will then describe some of the second generation MPS technologies which can obtain very long DNA sequences and are thus long read sequencing technologies. We will also hear about some of the clinical applications of both first and second generation MPS technologies as well.

Learning Objectives:

1. To understand about the different short read MPS technologies and their strengths and weaknesses

2. To understand how being able to characterize the complete genome sequence for an individual for $100, or less, will completely transform just about everything


Show Resources
You May Also Like
MAY 17, 2022 9:00 AM PDT
MAY 17, 2022 9:00 AM PDT
Date: May 17, 2022 Time: 9:00am (PDT), 12:00pm (EDT), 8:00pm (CEST) Gene therapeutics have great potential to treat many severe diseases in an unprecedented, targeted manner. The biopharmace...
JUN 28, 2022 7:00 AM PDT
JUN 28, 2022 7:00 AM PDT
Date: June 28, 2022 Time: 3:00pm (BST), 4:00pm (CET), 9:00am (CST), 7am (PST) Light-sheet microscopy is an extremely versatile imaging technique with a vast range of implementations that are...
OCT 11, 2022 8:00 AM PDT
C.E. CREDITS
OCT 11, 2022 8:00 AM PDT
Date: October 11, 2022 Time: 8:00am (PDT), 11:00pm (EDT), 5:00pm (CEST) Multiomic profiling of cell populations at single-cell resolution is revolutionizing scientists’ understanding o...
JUN 21, 2022 6:00 AM PDT
JUN 21, 2022 6:00 AM PDT
Date: June 21, 2022 Time: 6:00am (PDT), 9:00am (EDT), 3:00pm (CEST) The global understanding and practice of medicine is currently undergoing a revolutionary change. This shift to precision...
AUG 16, 2022 11:00 AM PDT
AUG 16, 2022 11:00 AM PDT
Date: August 16, 2022 Time: 11:00am (PDT), 2:00pm (EDT), 8:00pm (CEST) Understanding genomic variation in the context of cancer is paramount to identifying disease drivers and informing pers...
FEB 24, 2022 10:00 AM PST
C.E. CREDITS
FEB 24, 2022 10:00 AM PST
Date: February 24, 2021 Time: 10:00am (PST), 1:00pm (EST) One of the largest global public health crises is the rise of antimicrobial-resistant infections. Globally, over 700,000 people die...
Loading Comments...
Show Resources